Термоядролық реакциялар: Нұсқалар арасындағы айырмашылық

Content deleted Content added
Жаңа бетте: ''Термоядролық реакциялар'' Жеңіл ядролар энергия бөле отырып бірігу мүмкін. Тыныштықтағы уран ...
 
Өңдеу түйіні жоқ
1-жол:
[[Файл:Deuterium-tritium fusion.svg|thumb|Схема реакции дейтерий-тритий]]
''Термоядролық реакциялар''
 
Жеңіл ядролар энергия бөле отырып бірігу мүмкін. Тыныштықтағы уран ядросының массасы, ядро бөлінетін жарықшақтардың тыныштықтағы массалары қосындысынан артық. Жеңіл ядролар үшін жағдай керісінше. Мысалы, гелий ядросының тыныштықтағы массасы гелий ядросының құрамды бөлігі екі ауыр сутегі ядросының тыныштық массаларының қосындысынан аз.
'''Термоядролық реакция''', термоядролың синтез - миллиондаған градус температурада жүзеге асатын ядролық бірігу реакциясы деп аталады.
Бұл- екі жеңіл ядро біріккенде тыныштық массасы азаяды, ендеше, көп мөлшерде энергия бөліп шығарады деген сөз. Жеңіл ядролардың бірігуіндегі мұндай реакциялар термоядролық реакциялар деп аталадыб себебі олар өте жоғары температурада жүре алады.
 
Термоядролық реакцияалар- бұл жеңіл ядролардың өте жоғары температурада бірігу реакциясы. Ядролардың бірігуі ушін олардың 10 -12см шамасына жақындауы, яғни олардың ядролық күш әсерінің сферасына түсуі қажет. Мұндай жақындауға ядролардың кулондық тебілуі кедергі жасайды, оны тек ядроның жылулық қозғалысының өте зор кинетикалық энергиясының есебінен ғана жеңуге болады.
Жеңіл элементтерді (сутек, гелий, литий, т. б.) жүздеген миллион градусқа дейін қыздырғанда, олардың бейтарап атомдары тұтастығын жойып, ядролар мен электрондарға ыдырайды.
Термоядролық реакцияаларда бөлініп шығатын бір нуклонға есептелген энергия, ядролардың тізбекті реакциясы кезінде бөлініп шығатын меншікті энергиядан артып кетеді. Мысалы, ауыр сутегі
 
-дейтерий сутегінің аса ауыр изотопы
Нәтижесінде оң зарядты ядролардан, теріс зарядты электрондардан тұратын ерекше орта — жоғарғы температуралық плазма пайда болады. Мұндай плазмада ядролар кулондық тебіліс бөгетін (барьерін) жеңе алатын кинетикалық энергияға ие болады:
-тритиймен біріккенде бір нуклонға 3,5 МэВ-қа жуық энергия бөлінеді. Уранның бөлінуі кезінде бір нуклонға шамамен 1 МэВ энергия бөлінеді.
 
Термоядролық реакциялар әлемнің эволюциясында шешуші рөл атқарады. Күн мен жұлдыздардың сәуле шығару энергиясының термоядролық тегі болар. Қазіргі болжамдар бойынша, алғашқы даму кезінде жұлдыздар негізі сутегінен құралған. Жұлдыздардың ішінде температура жоғары болатыны сонша, оның ішінде протондардың бірігуінің реакциясы гелий түзумен қатар жүреді. Бұдан кейін гелий ядроларының бірігу кезінде неғұрлым ауыр элементтерде түзіледі. Осы реакцияалардың бәрі энергия бөліп шығарумен қабаттаса өтеді, ол миллиардтаған жылдарға жулдыздардың жарық шығаруын қамтамассыз етеді.
мұндағы k—Больцман тұрақтысы; Т—плазманың температурасы; m және v — бөлшектің массасы мен жылдамдығы.
Жерден басқарылатын термоядролық реакцияаны пайдалану мәселесін шешу адамзаттқа іс жүзінде таусылмайтын энергия көзін береді. Бұл бағытта ең перспективті болып есептелетін реакция – дейтрийдің тритиймен бірігуі реакциясы:
{{Ядролық физика}}
12Н + 31Н -> 42He + 01n
 
Бұл реакцияда 17,6 МэВ энергия бөлінеді. Тритий табиғатта жоқ болғандықтан, ол термоядролық реактордың өзінде литийден өндірілуі тиіс.
Температурасы жүздеген миллион градус болатын ыстық плазмадағы ядролар аса үлкен жылдамдықпен бір-біріне жақындап, ядролық күштердің әрекет аймағына енеді. Сол сәтте-ақ тегеурінді ядролық күш оларды біріктіріп, жаңа ядроны түзеді. Бұл кезде пайда болған m масса ақауы есебінен аса мол энергия босап шығады.
Есептеулер көрсеткендей, экономикалық жағынан тиімді реакция, реакцияға түсіетінзаттарды жүз миллиондаған градус шамасында дейін қыздырғанда ғана заттың үлкен тығыздығында жүре алады. Мұндай температураларды плазмада қуатты электр разрядын туғызу арқылы аламыз. Бұл бағыттағы негізгі қиыншылық – осынлай жоғарғы температурадағы плазманы қондырғының ішінде 0,1-1с бойы ұстап тұру.
 
Бұған ешбір заттан жасалған қабырғалар жарамайды , себебі соншалықты жоғары температурада олар буға айналып кетеді. Жоғарғы температурадағы плазманы шектеген көлемде ұстап тұрудың бірден-бір мүмкін болатын әдісі өте күшті магнит өрістерінің әсерін пайдалану болып табылады. Бірақ әлі күнге дейн бұл мәселені толық шешу плазманның тұрақсыздығынан мүмкін болмай келеді.Бұл тұрақсыздық зарядталған бөлшектердің бір бөлігін магниттік қабырғалардан өтетін диффузияға әкеліп соғады. Басқарылатын термоядрлық реакцияларды жүзеге асыру адамзаттың энергетикалық проблемасын шешуге қабілетті .
Жер бетінде алғаш рет термоядролық реакциялар 1950 жылдардың басында Қазақстанда (Семей полигоны) сутек бомбасын жару арқылы жүзеге асырылды. Қажетті жоғары температура атом бомбасын алдын ала жару үстінде алынды. Термоядролық бомбаның ішіне жоғары температура алу үшін атом бомбасының заряды және жеткілікті мөлшерде сутек изотоптары (мысалы, дейтерий) орналастырылады. Термоядролық жарылыста әуелі атом бомбасының заряды іске қосылады да, температура миллиондаған градусқа көтеріліп, сутек изотоптарының ядролары жаппай біріге бастайды. Осылайша әп-сәтте атом бомбасының жарылысы сутек бомбасының жарылысына ұласады.
Қазақстан Республикасының білім және ғылым министрлігі.
 
Каспий өңірінің қазіргі замандағы колледжі
Қолдан басқарылатын термоядролық реакцияларды іске асыру зор қиындықтарға кезікті. Оларды жүзеге асыру үшін, негізінен, үш мәселені шешу керек.
 
Біріншіден, сутек газын қыздыру арқылы ыстық плазманың температурасын ондаған миллион градусқа көтеру қажет.
 
Екіншіден, термоядролық реакцияны тұтандыру үшін ыстық плазманы суытпай, белгілі бір көлемде кем дегенде 10-1-10~2 с ұстап тұру қажет.
 
Үшіншіден, термоядролық реакция қарқынды жүріп, энергия шығыны қажетінше мол болуы үшін ыстық плазмадағы дейтерий ядроларының тығыздығы белгілі бір шамадан кем болмауы тиіс, яғни 1 м3 көлемде 1022 бөлшек болуы керек.
 
Осы үш шарт қатарынан орындалса ғана басқарылатын термоядролық реакцияны іске асыруға болады. Алайда плазма заттың ең орнықсыз күйі болып табылады, сондықтан бұл шарттарды бір мезгілде орындау мәселесі әлі күнге шешуін таппай отыр.<ref name=fiz2>[[Физика]] және [[астрономия]]: Жалпы білім беретін мектептің 9-сыныбына арналған оқулық. Өңд., толыкт. 2-бас. / Р. Башарұлы, Д. Қазақбаева, У. Токбергенова, Н. Бекбасар. — [[Алматы]]: "Мектеп" баспасы, [[2009]]. — 240 бет. ISBN 9965—36—700—0</ref>
 
== Пайдаланылған әдебиеттер ==
<references/>
 
{{уики}}
 
[[Санат:Термоядролық реакциялар|Термоядролық реакциялар]]
 
[[af:Kernfusie]]
[[an:Fusión nucleyar]]
[[ar:اندماج نووي]]
[[ast:Fusión nuclear]]
[[bg:Термоядрен синтез]]
[[bn:নিউক্লীয় ফিউশন]]
[[bs:Fuzija]]
[[ca:Fusió nuclear]]
[[cs:Termonukleární fúze]]
[[cy:Ymasiad niwclear]]
[[da:Fusion]]
[[de:Kernfusion]]
[[el:Πυρηνική σύντηξη]]
[[en:Nuclear fusion]]
[[eo:Fuzio]]
[[es:Fusión nuclear]]
[[et:Tuumaühinemine]]
[[eu:Fusio nuklear]]
[[fa:همجوشی هسته‌ای]]
[[fi:Fuusioreaktio]]
[[fr:Fusion nucléaire]]
[[gl:Fusión nuclear]]
[[he:היתוך גרעיני]]
[[hi:नाभिकीय संलयन]]
[[hr:Nuklearna fuzija]]
[[ht:Fizyon]]
[[hu:Magfúzió]]
[[id:Fusi nuklir]]
[[is:Kjarnasamruni]]
[[it:Fusione nucleare]]
[[ja:原子核融合]]
[[kk:Ядролық синтез]]
[[ko:핵융합]]
[[la:Fusio nuclearis]]
[[lt:Branduolių sąlaja]]
[[lv:Kodolsintēze]]
[[mk:Нуклеарна фузија]]
[[ml:അണുസംയോജനം]]
[[nl:Kernfusie]]
[[no:Kjernefysisk fusjon]]
[[pl:Reakcja termojądrowa]]
[[pnb:ایٹمی فیوژن]]
[[pt:Fusão nuclear]]
[[ro:Fuziune nucleară]]
[[scn:Fusioni nucliari]]
[[sh:Fuzija]]
[[si:න්‍යෂ්ටික විලයනය]]
[[simple:Nuclear fusion]]
[[sk:Jadrová syntéza]]
[[sl:Jedrsko zlivanje]]
[[sr:Nuklearna fuzija]]
[[su:Fusi nuklir]]
[[sv:Fusion]]
[[ta:அணுக்கரு இணைவு]]
[[th:นิวเคลียร์ฟิวชั่น]]
[[tr:Füzyon]]
[[uk:Ядерний синтез]]
[[vi:Phản ứng tổng hợp hạt nhân]]
[[zh:核聚变]]
[[zh-min-nan:Hu̍t-chú iông-ha̍p]]
[[zh-yue:原子核融合]]