Оптика — нұсқалар арасындағы айырмашылық

ш
clean up, replaced: Пайдаланған әдебиет → Дереккөздер using AWB
ш (clean up, replaced: Пайдаланған әдебиет → Дереккөздер using AWB)
[[Сурет:Dispersive Prism Illustration by Spigget.jpg|thumb|]]
 
'''Оптика''' ({{lang-el|optіke}} – көзбен қабылдау жөніндегі ғылым, {{lang-grc2|optas}} – көрінетін) – физиканың [[сәуле]] (жарық) шығару табиғатын, жарықтың таралуын және оның затпен әсерлесу құбылыстарын зерттейтін бөлімі.<ref>Қазақ энциклопедиясы, 7 том</ref><ref> Орысша-қазакша түсіндірме сөздік: Ғылымтану. Жалпы редакциясын басқарған э.ғ.д., профессор Е. Арын- Павлодар: ҒӨФ «ЭКО», 2006.
 
ISBN 9965-808-78-3</ref><ref> Полиграфия, өлшеу техникасы, ағаш өңдеу жабдыктары және металл өңдеу техникасы мен технологиясы: Қазақша-орысша терминдердің түсіндірме сөздігі.</ref>
'''Оптика''' ({{lang-el|optіke}} – көзбен қабылдау жөніндегі ғылым, {{lang-grc2|optas}} – көрінетін) – физиканың [[сәуле]] (жарық) шығару табиғатын, жарықтың таралуын және оның затпен әсерлесу құбылыстарын зерттейтін бөлімі.<ref>Қазақ энциклопедиясы, 7 том</ref><ref> Орысша-қазакша түсіндірме сөздік: Ғылымтану. Жалпы редакциясын басқарған э.ғ.д., профессор Е. Арын- Павлодар: ҒӨФ «ЭКО», 2006.
ISBN 9965-808-78-3</ref><ref> Полиграфия, өлшеу техникасы, ағаш өңдеу жабдыктары және металл өңдеу техникасы мен технологиясы: Қазақша-орысша терминдердің түсіндірме сөздігі.</ref>
 
==Жарық==
[[Сурет:Eye-diagram no circles border.svg|thumb|left|]]
[[File:Tonkaya linsa .jpg|thumb| alt=A.| ''[[Жұқа линза]]''.]]Жарық электро-магниттік толқын болғандықтан Оптика электро-магниттік өріс жөніндегі жалпы ілімнің (электрдинамиканың) бір бөлігі болып табылады. Оптикалық сәулелер толқын ұзындығы (λ) бойынша 1 нм-ден 1 мм-ге, бір жағынан рентген, ал екінші жағынан радиосәуленің микротолқындық диапазонына дейінгі аралықты қамтиды. Оптика қалыптасқан дәстүр бойынша [[геометрия]]лық, физикалық және [[физиология]]лық Оптика болып бөлінеді. Геометриялық Оптика жарықтың табиғатына назар аудармай, тек оның таралуының тәжірибелік заңдарына сүйеніп, өзара тәуелсіз жарық сәулелерінің біртекті ортада түзу сызықтар бойымен таралуын, әртекті орталар шекарасындағы шағылу және сыну заңдылықтарын зерттейді. Бұл заңдылықтар әр түрлі оптикалық құрылымдарды жобалауға, есептеуге ([[көзілдірік]], [[микроскоп]], [[телескоп]], т.б.) мүмкіндік береді. Сонымен қатар ол жарық әртекті орта арқылы өткенде байқалатын құбылыстарды (сағым, кемпірқосақ, т.б.) зерттейді. Есептеу математикасының кеңінен қолданылуы, әдістемелерінің дамып жетілуі есептеу Оптикасы деген жаңа бағыттың дамуына алып келді. Жарық шамаларын өлшейтін Оптиканың фотометрия бөлімі де іс жүзінде жарықтың табиғатын ескермейді. Оның бірқатар мәселелері адам көзінің жарықты сезу, қабылдау қабілетіне байланысты шешіледі. Бұл заңдылықтар биофизика мен психологияға және көздің көру механизмдеріне сүйенетін физиол. Оптикада зерттеледі. Жарықтың табиғаты, оған байланысты әр түрлі оптикалық құбылыстар (интерференция, дифракция, полярлануы және жарықтың анизотроптық орталарда таралуы, т.б.) физикалық Оптикада зерттеледі. Жарықтың [[толқын]]дық қасиеттері физикалық Оптиканың негізгі бөлімі – толқындық Оптикада зерттеледі. Толқындық Опитканың негізін Х.Гюйгенс (1629 – 1695), Т.Юнг (1773 – 1829), О.Френель (1788 – 1827) және т.б. қалаған. Гюйгенстің Оптикаға қосқан, осы кезге дейін маңызын жоймаған ең басты үлесі – Гюйгенс – Френель принципі.
[[Сурет:Jonquil flowers at f32.jpg|thumb|]]
[[Сурет:Jonquil flowers at f5.jpg|thumb|]]
===Жарықталған оптика===
Жарықталған оптика-- кейбіроптика—кейбір элементтерінің жарық шағылу коэффициенттері оларға арнайы жапкыштар жағу жолымен азайтылған оптикалык жүйе.
===Оптиканың жарықталуы===
Оптиканың жарықталуы - оптикалық жүйе тетіктерінің шағылу коэффициентін оларға арнайы жапқыштар жағу жолымен азайту.
 
==А.Эйнштейн==
Түсініктерге қайшы келген осы тұжырым негізінде А.Эйнштейн [[1905]] жылы [[фотоэффект]] құбылысының негізгі заңдарын түсіндірді. Фотоэффект құбылысы жарық табиғатындағы екіжақтылықты, толқындық та корпускулалық та қасиеттерді көрсетті. [[1916]] жылы Эйнштейн еріксіз сәуле шығару теориясын жасап, соның негізінде [[1954]] жылы сантиметрлік диапозонда еріксіз монохроматты сәуле шығаратын алғашқы кванттық генераторлар [мазерлер, А.М. Прохоров, Н.Г. Басов (КСРО) және Ч.Таунс (АҚШ)], [[1960]] жылы когеренттік жарық сәулесін шығаратын рубиндік лазер [Т.Мейман (АІШ)] жасалып, Оптиканың маңызы арта түсті. [[Лазер]]лерді қолдану атомның, молекуланың және конденсацияланған ортаның құрылысы мен оларда өтетін процестер жайлы мол деректер беретін лазерлік спектроскопияны күрт дамытты. [[1948]] жылы ағылшын физигі Д.Габор негізін қалаған голография әдісі лазер пайда болғаннан кейін нысанның көлемдік кескінін алудың, шапшаң өтетін процестерді тіркеудің және денелердегі ығысу мен кернеулерді зерттеудің жаңа мүмкіндіктерін туғызды. Жарық интерференциясы арқылы аса дәл өлшеу әдістері, кванттық оптикалық аппараттар (фотоэлементтер, фотоэлектрондық көбейткіштер, т.б.), полярлану мен дифракция құбылыстарына негізделген аса сезгіш оптикалық аппараттар өмірде кеңінен қолданылады. Фотографияның негізінде жатқан фотохимиялық процестер Оптика мен химияның шекарасындағы сала – [[фотохимия]]да зерттеледі. Өткен 20 ғасырдың 70-жылдары есептеу техникасы мен ақпараттану мәселелерін шешуге голография принциптерін қолдану интегралдық Оптика деген жаңа саланың дамуына алып келді. Лазердің қолданылуына байланысты Оптикалық локация және Оптикалық байланыс жүйелері пайда болды. Оптикалық құбылыстарды бақылау және талдау қазіргі заманның негізгі физикалық теориялары кванттық механика мен салыстырмалық теориясының пайда болуына себеп болды.<ref> Қазақ тілі терминдерінің салалық ғылыми түсіндірме сөздігі:
Машинажасау.
— Алматы: "Мектеп" баспасы, 2007. ISBN 9965-36-417-6</ref>
* [[М.Фарадей]]
==Дереккөздер==
==Пайдаланған әдебиет==
 
<references/>