Майкл Стюарт Браун

Майкл Стюарт Браун (ағылш. Michael Stuart Brown; 13 сәуір, 1941, Бруклин, Нью-Йорк, АҚШ) — танымал америкалық дәрігер және биохимик. Тұқымқуалаушылық гиперхолестеринемииді зерттегені төмен тығыздықты липопротеинді рецепторды Джозеф Голдштейнмен бірге ашқаны үшін 1985 жылғы Физиология немесе медицина саласындағы Нобель сыйлығы.

Майкл Стюарт Браун
ағылш. Michael Stuart Brown

Майкл Браун (2003).
Туған күні

13 сәуір 1941 (1941-04-13) (83 жас)

Туған жері

Бруклин, Нью-Йорк, АҚШ

Азаматтығы

 АҚШ

Ғылыми аясы

генетика, биохимия

Жұмыс орны

Даллас Техас университеті

Альма-матер

Пенсильвания университеті

Несімен белгілі

исследователь регуляции метаболизма холестерина

Марапаттары


Луиза Гросс Хорвиц жүлдесі (1984)
Физиология немесе медицина саласындағы Нобель сыйлығы (1985),
АҚШ Ұлттық ғылыми медалі (1988)
Олбани медицина орталығының жүлдесі (2003)

Өмірбаян өңдеу

Майкл Браун Пенсильвания университетін 1962 жылы бітіріген соң 1966 жылы, университеттің медициналық мектебін бітірді. Содан бері, Холестерин метаболизмі саласында Оңтүстік-Батыс медициналық орталығы жұмыс істейді (Техас университеті). Жетекші биологиялық және медициналық журналдарда көптеген мақалалардың авторы. 1985 жылы ол өзінің тығыздығы төмен липопротеинді рецепторды ашқаны үшін Нобель сыйлығын алды.

Библиография өңдеу

Негізгі ғылыми жарияланымдары:

[1] Expression of the familial hypercholesterolemia gene in heterozygotes: mechanism for a dominant disorder in man. Science. 1974 Jul 5;185(4145):61-3.

[2] Regulation of the activity of the low density lipoprotein receptor in human fibroblasts. Cell. 1975 Nov;6(3):307-16.

[3] Release of low density lipoprotein from its cell surface receptor by sulfated glycosaminoglycans. Cell. 1976 Jan;7(1):85-95.

[4] Receptor-mediated control of cholesterol metabolism. Science. 1976 Jan 16;191(4223):150-4.

[5] Heterozygous familial hypercholesterolemia: failure of normal allele to compensate for mutant allele at a regulated genetic locus. Cell. 1976 Oct;9(2):195-203.

[6] Analysis of a mutant strain of human fibroblasts with a defect in the internalization of receptor-bound low density lipoprotein. Cell. 1976 Dec;9(4 PT 2):663-74.

[7] Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell. 1977 Mar;10(3):351-64.

[8] Genetics of the LDL receptor: evidence that the mutations affecting binding and internalization are allelic. Cell. 1977 Nov;12(3):629-41.

[9] A mutation that impairs the ability of lipoprotein receptors to localise in coated pits on the cell surface of human fibroblasts. Nature. 1977 Dec 22-29;270(5639):695-9.

[10] Immunocytochemical visualization of coated pits and vesicles in human fibroblasts: relation to low density lipoprotein receptor distribution. Cell. 1978 Nov;15(3):919-33.

[11] Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. 1979 Jun 21;279(5715):679-85

[12] LDL receptors in coated vesicles isolated from bovine adrenal cortex: binding sites unmasked by detergent treatment. Cell. 1980 Jul;20(3):829-37.

[13] Regulation of plasma cholesterol by lipoprotein receptors. Science. 1981 мамыр 8;212(4495):628-35.

[14] Monensin interrupts the recycling of low density lipoprotein receptors in human fibroblasts. Cell. 1981 мамыр;24(2):493-502.

[15] Posttranslational processing of the LDL receptor and its genetic disruption in familial hypercholesterolemia. Cell. 1982 Oct;30(3):715-24

[16] Independent pathways for secretion of cholesterol and apolipoprotein E by macrophages. Science. 1983 Feb 18;219(4586):871-3.

[17] Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 1983 Mar;32(3):663-7

[18] The LDL receptor locus in familial hypercholesterolemia: multiple mutations disrupt transport and processing of a membrane receptor. Cell. 1983 Mar;32(3):941-51.

[19] Depletion of intracellular potassium arrests coated pit formation and receptor-mediated endocytosis in fibroblasts. Cell. 1983 мамыр;33(1):273-85

[20] Increase in membrane cholesterol: a possible trigger for degradation of HMG CoA reductase and crystalloid endoplasmic reticulum in UT-1 cells. Cell. 1984 Apr;36(4):835-45.

[21] Nucleotide sequence of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, a glycoprotein of endoplasmic reticulum. Nature. 1984 Apr 12-18;308(5960):613-7.

[22] Domain map of the LDL receptor: sequence homology with the epidermal growth factor precursor. Cell. 1984 Jun;37(2):577-85.

[23] HMG CoA reductase: a negatively regulated gene with unusual promoter and 5' untranslated regions. Cell. 1984 Aug;38(1):275-85.

[24] The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell. 1984 Nov;39(1):27-38

[25] Mutation in LDL receptor: Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. Science. 1985 Jan 11;227(4683):140-6.

[26] The LDL receptor gene: a mosaic of exons shared with different proteins. Science. 1985 мамыр 17;228(4701):815-22.

[27] Cassette of eight exons shared by genes for LDL receptor and EGF precursor. Science. 1985 мамыр 17;228(4701):893-895

[28] Membrane-bound domain of HMG CoA reductase is required for sterol-enhanced degradation of the enzyme. Cell. 1985 мамыр;41(1):249-58.

[29] Internalization-defective LDL receptors produced by genes with nonsense and frameshift mutations that truncate the cytoplasmic domain. Cell. 1985 Jul;41(3):735-43.

[30] 5' end of HMG CoA reductase gene contains sequences responsible for cholesterol-mediated inhibition of transcription. Cell. 1985 Aug;42(1):203-12.

[31] Scavenger cell receptor shared. Nature. 1985 Aug 22-28;316(6030):680-1.

[32] A receptor-mediated pathway for cholesterol homeostasis. Science. 1986 Apr 4;232(4746):34-47.

[33] The J.D. mutation in familial hypercholesterolemia: amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors Cell. 1986 Apr 11;45(1):15-24.

[34] Deletion in cysteine-rich region of LDL receptor impedes transport to cell surface in WHHL rabbit. Science. 1986 Jun 6;232(4755):1230-7.

[35] Duplication of seven exons in LDL receptor gene caused by Alu-Alu recombination in a subject with familial hypercholesterolemia. Cell. 1987 Mar 13;48(5):827-35.

[36] 42 bp element from LDL receptor gene confers end-product repression by sterols when inserted into viral TK promoter. Cell. 1987 Mar 27;48(6):1061-9.

[37] Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region. Nature. 1987 Apr 23-29;326(6115):760-765

[38] Overexpression of low density lipoprotein (LDL) receptor eliminates LDL from plasma in transgenic mice. Science. 1988 Mar 11;239(4845):1277-81.

[39] Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetrapeptides. Cell. 1990 Jul 13;62(1):81-8.

[40] Diet-induced hypercholesterolemia in mice: prevention by overexpression of LDL receptors. Science. 1990 Nov 30;250(4985):1273-5

[41] Protein farnesyltransferase and geranylgeranyltransferase share a common alpha subunit. Cell. 1991 мамыр 3;65(3):429-34.

[42] cDNA cloning and expression of the peptide-binding beta subunit of rat p21ras farnesyltransferase, the counterpart of yeast DPR1/RAM1. Cell. 1991 Jul 26;66(2):327-34.

[43] Purification of component A of Rab geranylgeranyl transferase: possible identity with the choroideremia gene product. Cell. 1992 Sep 18;70(6):1049-57.

[44] Koch’s postulates for cholesterol. Cell. 1992 Oct 16;71(2):187-8.

[45] cDNA cloning of component A of Rab geranylgeranyl transferase and demonstration of its role as a Rab escort protein. Cell. 1993 Jun 18;73(6):1091-9

[46] SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell. 1993 Oct 8;75(1):187-97.

[47] Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell. 1994 Mar 11;76(5):865-73.

[48] SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell. 1994 Apr 8;77(1):53-62

[49] Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell. 1996 Jun 28;85(7):1037-46

[50] Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell. 1996 Nov 1;87(3):415-26.

[51] The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997 мамыр 2;89(3):331-40.

[52] Transport-dependent proteolysis of SREBP: relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi. Cell. 1999 Dec 23;99(7):703-12.

[53] Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell. 2000 Feb 18;100(4):391-8.

[54] Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell. 2000 Aug 4;102(3):315-23.

[55] Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell. 2002 Aug 23;110(4):489-500.

Қайнар көзі өңдеу

Сілтемелер өңдеу

Үлгі:Библиоақпарат